首页> 外文OA文献 >A Hierarchical Manifold Microchannel Heat Sink Array for High-Heat-Flux Two-Phase Cooling of Electronics
【2h】

A Hierarchical Manifold Microchannel Heat Sink Array for High-Heat-Flux Two-Phase Cooling of Electronics

机译:用于电子的高热通量两相冷却的分层歧管微通道散热器阵列

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

High-heat-flux removal is necessary for next-generation microelectronic systems to operate more reliably and efficiently. Extremely high heat removal rates are achieved in this work using a hierarchical manifold microchannel heat sink array. The microchannels are imbedded directly into the heated substrate to reduce the parasitic thermal resistances due to contact and conduction resistances. Discretizing the chip footprint area into multiple smaller heat sink elements with high-aspect-ratio microchannels ensures shortened effective fluid flow lengths. Phase change of high fluid mass fluxes can thus be accommodated in micron-scale channels while keeping pressure drops low compared to traditional, microchannel heat sinks. A thermal test vehicle, with all flow distribution components heterogeneously integrated, is fabricated to demonstrate this enhanced thermal and hydraulic performance. The 5 mm x 5 mm silicon chip area, with resistive heaters and local temperature sensors fabricated directly on the opposite face, is cooled by a 3 x 3 array of microchannel heat sinks that are fed with coolant using a hierarchical manifold distributor. Using the engineered dielectric liquid HFE-7100 as the working fluid, experimental results are presented for channel mass fluxes of 1300, 2100, and 2900 kg/m2 s and channel cross sections with nominal widths of 15 micrometers and nominal depths of 35 micrometers, 150 micrometers, and 300 micrometers. Maximum heat flux dissipation is shown to increase with mass flux and channel depth and the heat sink with 15 micrometers x 300 micrometers channels is shown to dissipate base heat fluxes up to 910 W/cm2 at pressure drops of less than 162 kPa and chip temperature rise under 47 degrees C relative to the fluid inlet temperature.
机译:为了使下一代微电子系统更可靠,更有效地运行,必须去除高热通量。使用分层歧管微通道散热器阵列,可以在这项工作中实现极高的除热率。将微通道直接嵌入加热的基板中,以减少由于接触和传导电阻而引起的寄生热阻。通过高纵横比的微通道将芯片覆盖区离散为多个较小的散热器元件,可确保缩短有效的流体流动长度。因此,与传统的微通道散热器相比,高流体质量通量的相变可以容纳在微米级通道中,同时保持压降较低。制造了一种热测试车,其所有流量分配组件均异构集成,以展示这种增强的热力和水力性能。 5毫米x 5毫米的硅芯片区域,直接在相对的表面上制造电阻加热器和局部温度传感器,由3 x 3的微通道散热器阵列冷却,并使用分级歧管分配器向其注入冷却剂。使用工程介电液HFE-7100作为工作流体,得出了1300、2100和2900 kg / m2 s的通道质量通量以及标称宽度为15微米,标称深度为35微米,150的通道横截面的实验结果。微米和300微米。最大的热通量显示随着质量通量和通道深度的增加而增加,具有15微米x 300微米通道的散热器显示出在压力降小于162 kPa且芯片温度上升时耗散高达910 W / cm2的基本热通量。相对于流体入口温度低于47摄氏度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号